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Abstract Studies of the effects of mating order on fertiliza-
tion success, classically analyzed as the proportional paternity
of the second male, have advanced our understanding of the
relative influences of postcopulatory male–male competition
and female choice on sexual selection. However, results from
these studies are often difficult to analyze because (1) distri-
butions of offspring per dam rarely follow a normal distribu-
tion and (2) proportional paternities are never normally dis-
tributed. Previous studies partially account for these limita-
tions by using nonparametric statistics. However, behavioral
studies are often plagued by relatively small sample sizes and
require a more powerful analytical approach. Here, we devel-
op a new analytical framework for studying fertilization bias.
Our Approximate Bayesian Computational (ABC) model
overcomes many of the limitations of currently employed
methods. We apply our model to analyze the effects of male
mating order on paternity success in the brown anole lizard,
Anolis sagrei . Using our ABC simulation, we find a marked
first-male advantage: first males sired approximately 80 % of
the offspring in our study. Next, based on re-analysis of four
previously published datasets, we show that traditional statis-
tical methods often over- or underestimate biases related to

mating order. Moreover, by comparing our model to more
traditional statistical tests, we show that the ABC method is
robust to relatively small samples sizes and should therefore
be useful for studying mating-order effects in a variety of
systems. Our model is implemented as an R package, ABCp2 ,
and is freely available for use.
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Introduction

Sexual selection is a major driver of biodiversity with the
power to create spectacular forms of variation (Darwin
1871; Andersson 1994). However, only recently have we
begun to understand how processes operating at the post-
copulatory level can create variation through cryptic mecha-
nisms of male–male competition and female choice. Long-
term sperm storage is one such postcopulatory process and is
widespread in the animal kingdom (Eberhard 1996; Birkhead
and Møller 1998; Simmons 2001). Whenever a female mates
with and stores sperm from multiple males, there is the poten-
tial for fertilization to be biased on the basis of mating order.
This is because the first male may prevent subsequent males
frommating (through physical barriers such as sperm plugs or
behaviors such as mate guarding), whereas the last male can
manipulate sperm from previous males (e.g., sperm scooping
in odonates, Eberhard 1996). Studying fertilization biases that
arise due to mating order is one important means of under-
standing cryptic processes that influence reproductive success
(Thornhill 1983; Birkhead et al. 1995).

Molecular methods for analyzing paternity make it possible
to study the role of long-term sperm storage in fertilization
biases. The proportional paternity of the second male to mate
(P2) has been used as a means to analyze molecular data for
evidence of sire precedence based on mating order (Birkhead
and Hunter 1990; Parker and Pizzari 2010). Many studies of
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P2 face a common analytical challenge when testing the
relative fitness advantage of one male over another, namely
that the data do not easily lend themselves to simple statistical
analysis. This is expected based on theory since males should
have large variance in reproduction success, and thus, distri-
butions of reproductive success are usually not normally
distributed (Bateman 1948; Andersson 1994). Additionally,
most count data, such as the number of offspring sired, tend to
be Poisson-distributed. Moreover, mating-order data are typ-
ically analyzed as proportions (i.e., P2), which further compli-
cates statistical analysis. Some studies have dealt with these
challenges using arcsine square root transformations of P2
(Kraaijeveld-Smit et al. 2002; House et al. 2007; Harano
et al. 2008), but these transformations do not always result
in normalized distributions. Indeed, Eggert et al. (2003)
showed that violation of the assumptions of statistical analyses
could lead to inaccurate interpretations and concluded that a
complete understanding of sperm competition dynamics
strongly depends on using appropriate statistical analyses.

In cases where P2 can be estimated as a binomial prob-
ability, an alternative approach to investigating effects of
mating order is to use analyses that assume binomial prob-
ability distributions of offspring sired by the second male
(Kraaijeveld-Smit et al. 2002; Evanno et al. 2005). Al-
though this method may increase statistical power, it is
not always appropriate to assume a binomial distribution
of offspring paternities, especially when large sample sizes
are not available, or when there is large variance in repro-
duction among females. In cases of small sample sizes or
high variance among females, the degree of noise in the
data may make it difficult to detect relevant biological
patterns through a binomial analysis or nonparametic anal-
ysis. Cook et al. (1997) developed an approach that creates
a hypothetical distribution of P2 values based on empirical
estimates of the mean and variance in number of sperm
transferred per male. Still, this method requires knowledge
of the amount of sperm transferred and thus is not easily
applied to most systems. Clearly, there remains a pressing
need for a powerful and broadly applicable analytical
framework for studying paternity biases and their role in
sexual selection.

Approximate Bayesian Computation (ABC) has been used
to address a number of biological questions in which the data
are not easily or appropriately analyzed through classical
statistical methods (e.g., Pritchard et al. 1999). The ABC
approach involves simulating data based on priors from the
observed data and then comparing simulated and observed
data. The simulated data are accepted if they are found to be
reasonably close to the observed data, based on predefined
rejection criteria. Following this approach, a posterior distri-
bution of accepted values is generated and used to gain infer-
ence on the observed data. Here, we develop a novel ABC
statistical package (ABCp2) in R (R Development Core) to

study fertilization bias with respect to mating order. Our
model uses summary statistics calculated from molecular
paternity data as priors and matches the underlying distribu-
tion of the data (Poisson or special cases of Normal and
Gamma) for enhanced sensitivity at detecting variation in
male reproductive success due to mating order. We test the
robustness of our model using simulation and apply the model
to a molecular paternity dataset from a breeding study of
brown anoles, Anolis sagrei . This lizard has recently become
the subject of much research on postcopulatory fertilization
biases (Cox and Calsbeek 2010; Cox et al. 2011) and repre-
sents an ideal system in which to test our model. Additionally,
although the majority of reptiles that have been studied exhibit
long-term sperm storage, the effects of mating order on pater-
nity success in these species are largely unknown (but see
Olsson and Madsen 1998; Zamudio and Sinervo 2000;
Calsbeek et al. 2007; Radder et al. 2008). Thus, our study
provides important additional data on sperm storage in reptiles.

We further demonstrate the utility of our model by applying
it to four previously published datasets: studies of mating
order biases in rough-skinned newts, Taricha granulosa
(Jones et al. 2002), fungus beetles, Bolitotherus cornutus
(Conner 1995), rove beetles, Aleochara curtula (Benken
et al. 1999), and in soapberry bugs, Jadera haematoloma
(Carroll 1991). We chose these studies because they represent
a range of biological patterns that can result from the effects of
mating order (first- to last-male precedence), a range of pre-
vious statistical approaches, and a range of biological systems
for which a P2 approachmay be relevant. We predicted that, in
some cases, our method would reveal mating order biases not
previously detected by more traditional statistical tests, owing
to the enhanced power that our model provides by fitting each
analysis to the appropriate statistical distribution. This new
ABC approach to studying mating order biases overcomes
many of the shortcomings of previous studies and can be
adapted to analyze reproductive patterns in future studies.

Methods

Approximate Bayesian Computation

To assess the effects of male mating order on reproductive
success, we developed an Approximate Bayesian model using
the ABC inference framework and rejection algorithm
outlined by Pritchard et al. (1999). We designed our model
in the R (Version 2.11.1; R Development Core Team) pro-
gramming language and compiled all functions into an R
package (ABCp2), which is freely downloadable from the
Comprehensive R Archive Network (http://cran.r-project.
org). Below, we outline the general framework of the model
and then describe how it was applied to the Anolis paternity
data and four previously published datasets.
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First, we determine the statistical distribution that best fits
the distribution of total offspring per female using the fitdistr
function in the MASS package (Venables and Ripley 2002).
Next, we generate a distribution of total offspring per dam
according to the estimated parameters (e.g., mean and stan-
dard deviation, if normal) and test the goodness of fit using a
chi-squared test. Our R package automates this for the
Poisson, Normal, and Gamma distributions using our func-
tions fit_dist_pois , fit_dist_norm , and fit_dist_gamma . For
the normal and gamma distributions, we exclude negative and
zero values of offspring when generating the distribution of
total offspring to more closely approximate actual offspring
count data. If the distribution is a good fit based on the chi-
squared test, the estimates for the distribution parameters can
be used as hyperpriors in the ABC model for estimating P2.

Once the best-fit distribution has been chosen, our func-
tions ABC_P2_pois , ABC_P2_norm , and ABC_P2_gamma
can be used to estimate P2. The first step in these functions is
to generate a large number of distributions of number of
offspring per dam. The number of dams (n ) can be varied in
our model to match empirical data of different sample sizes.
The distribution of offspring is generated according to the
hyperpriors that were estimated from the parameters of the
offspring distribution using the fit_dist functions. Then, the
proportional paternity of the second male (P2) is estimated
from these simulated datasets using a prior from the empirical
data, the mean number of progeny sired by the second male
(ObsMean ). For each simulated distribution, we use a random
binomial number generator to assign a proportion of offspring
to the second male based on a random proportion (P2) drawn
from the uniform distribution. Prior values of P2 range from 0
to 1. To compare the randomly generated P2 to the actual P2
observed in the empirical data, we calculate the difference
(delta ) between the mean number of progeny sired by the
second male from the simulated distribution (MeanP2) and
the mean number of progeny sired by the second male from
the data (ObsMean ) (e.g., |meanP2−ObsMean|). The user
defines the delta value according to the desired maximum
allowed difference between the observed and estimated mean
number of offspring sired by the second male. If |meanP2−
ObsMean|≤delta, the P2 value is accepted and saved to the
posterior distribution. To generate a posterior distribution of
P2 values, this process is iterated several thousand times (e.g.,
10,000 times) by specifying the iter argument in the function.
The value of P2 is estimated based on the mean and 95 %
credible intervals (CI) of this posterior.

Verification and sensitivity of model

To verify the effectiveness of our model, we simulated virtual
datasets according to set P2 values ranging from 0.1 to 0.9 in
increments of 0.1 (we exclude 0 and 1 from this range as these,
by definition, rule out multiple paternity) and tested the ability

of the model to accurately estimate these set values. All
simulations were conducted in R (Version 2.11.1; R Develop-
ment Core Team) using scripts to automate the process. For
each simulation, we generated a virtual dataset according to
the parameters from our Anolis dataset (shape and scale values
of the distribution), calculated a mean number of offspring
from the second male in each virtual dataset, and used this
value as the prior in the model. We estimated P2 values from
1,000 iterations for each P2 value and compared the posterior
distributions to the set P2 values of the simulated data using
95 % credible intervals.

To establish the sensitivity of our model to the underlying
distribution of the number of offspring per female, we
conducted a series of misspecified models. Simulated datasets
were generated for a sample size of 100 dams, according to an
assigned P2 value, under Poisson, Normal, and Uniform dis-
tributions of offspring counts, and we tested the ability of the
model to accurately estimate the assigned value by analysis
under the gamma distribution. Accuracy of the estimates was
judged based on 95 % credible intervals.

To establish the sensitivity of the model to variation in
sample size (numbers of dams), we simulated P2 values for
sample sizes that ranged from 10 to 50 dams in increments of
ten and for P2 values ranging from 0.1 to 0.9 by increments of
0.1. We also tested the performance of our model using large
sample sizes to establish the sample size needed to detect P2
values at fine deviations from random. For this test, we
compared the same assigned values of P2 for sample sizes of
100–1,000 in increments of 100. For each simulation, we
generated virtual datasets according to the parameters from
our Anolis dataset (shape and scale values of the gamma
distribution and 1.32 as an observed mean number of off-
spring from the second male). For each sample size and at
each P2 value, we calculated the 95 % credible intervals from
the generated posterior distributions for 100 iterations to
quantify the precision of the estimate at varying sample sizes.

Comparison to classical statistics

To compare our approximate Bayesian model to classical
methods of P2 analysis, we resampled from an existing pater-
nity dataset for Anolis lizards (Cox and Calsbeek 2010; Cox
et al. 2011) using increasingly larger sample sizes (see below)
to determine the proportion of significant results from 1,000
iterations of resampling. We resampled data for two statistical
tests: the Binomial and the Wilcoxon tests. For both tests, we
resampled values for the number of offspring sired by each
male, at random and with replacement, from our laboratory
dataset. For the Binomial test, we tested whether the sampled
value of offspring sired by the second male differed from the
null hypothesis of 0.5 for P2. We used the nonparametric
Wilcoxon test to determine whether the mean number of
offspring differed between the first and second male, for the
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resampled data. For both tests, we used sample sizes of 50,
100, 200, 300, 400, and 500 dams. Values of paternity were
sampled equally for both males (i.e., for 50 dams, we sampled
25 values from offspring sired from the first male and 25
values of offspring from the second male from our laboratory
dataset). All resampling and statistical tests were conducted in
R (Version 2.11.1; R Development Core Team).

Applying the model

We analyzed Anolis paternity data from a previously pub-
lished breeding study of brown anoles (Cox and Calsbeek
2010; Cox et al. 2011). This dataset is ideal for assessing the
effects of mating order on paternity because each captive dam
(N =67) was provided with two potential mates. Complete
details of animal husbandry and care are described by Cox
et al. (2011). Briefly, we placed both males in the dam's cage
and allowed her to assess them together for 2 days. We then
removed one male and allowed the other male to mate exclu-
sively with the dam for 1 week. Finally, we removed the first
male and allowed the second male to mate exclusively with
the dam for 1 week. Using this design, each male mated with
two dams, once as the first and once as the second male, thus
controlling for the potential effects due to individual males on
mating precedence. We allowed dams to oviposit in potted
plants and subsequently collected tissue samples from all
hatchlings upon emergence. We genotyped each dam, sire,
and hatchling at six microsatellite loci (Bardeleben et al. 2004)
using procedures described in Cox et al. (2011). Maternity
was known with certainty, and we assigned paternity using the
software package CERVUS (Marshall et al. 1998) following
methods reported elsewhere (Calsbeek and Bonneaud 2008;
Cox et al. 2011).

To analyze the Anolis paternity data, offspring were simu-
lated according to the gamma distribution. This distribution
was chosen based on fitting the distribution of total offspring
per dam using our fit_dist functions and testing the goodness
of fit of each distribution using the results of the chi-squared
test. Hyperpriors of this distribution were estimated by vary-
ing the shape and scale parameters of the gamma distribution
and determining which parameters most accurately reflected
the offspring distribution of the empirical data and returned
the most precise estimate for P2, based onwidth of the credible
interval. We tested priors of the shape parameter from 2–20
and values of scale parameters from 0.1–1. Starting values for
these ranges were chosen based on the fit of the gamma
distribution conducted using our fit_dist_gamma function.
After estimating these hyperpriors, scale and shape parameters
of the gamma distribution were randomly generated from a
uniform distribution around the best-fit values from the initial
simulations. Distributions were generated for 67 dams (n ),
according to the number of dams in our empirical data, and the
prior value for the observed mean number of offspring of the

second male (ObsMean ) was set at 1.32, according to the
mean calculated from our Anolis paternity data. We tested
delta values of 0.1 and 0.01. Because we were analyzing
offspring counts, differences smaller than 0.01 in numbers of
offspring were not likely to be biologically relevant. We ran
the model for 10,000 iterations and estimated P2 for the Anolis
data based on the mean and 95 % credible intervals of the
posterior.

We also analyzed sperm precedence data from four previ-
ously published datasets (Carroll 1991; Conner 1995; Benken
et al. 1999; Jones et al. 2002). Although these studies varied in
the particulars of experimental design, they all involved a
mating design in which females were allowed to mate sequen-
tially with two males and the proportional paternity of each
male was assessed by using the sterile male technique (Carroll
1991), or by genotyping using starch gel electrophoresis
(Conner 1995), DNA fingerprinting (Benken et al. 1999), or
microsatellite markers (Jones et al. 2002). We analyzed these
four datasets using our ABC model following a procedure
similar to our analysis of the Anolis data. First, the distribution
of total offspring per dam for each dataset was analyzed using
our fit_dist functions to determine the best-fit distribution
(Normal, Poisson, or Gamma). Then, the goodness of fit of
each distribution was verified using the results of the chi-
squared test. Next, the hyperpriors of each model were opti-
mized—mean and standard deviation if normally distributed,
lambda if fit to a Poisson distribution, and shape and rate if fit
to a gamma distribution. Finally, we estimated P2 for each data
set using the optimized hyperpriors and the observed mean
number of offspring from the second male (ObsMean ) as a
prior. P2 was estimated based on a posterior generated through
1,000 iterations of the model.

Results

Verification and sensitivity of model

In our simulation tests of the effectiveness of our model, mean
estimates of P2 always agreed with the assigned values used in
each model and credible intervals were small in all cases
(mean CI, 0.102; Fig. 1). Thus, our model is both accurate
and precise at estimating P2.

Our model was not sensitive to the underlying distribution
and accurately estimated assigned values of P2 for misspe-
cified models. For models analyzed under gamma and simu-
lated under other distributions, the credible intervals were
small, suggesting that our model is not sensitive to the under-
lying distribution. Lengths of credible intervals were as fol-
lows: Poisson (0.17), Normal (0.16), and Uniform (0.21). This
suggests that even if the chosen distribution is not the best-fit
distribution, the estimated P2 value should be only 0.11 units
above or below the actual value, at most.
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Simulations indicated that sample sizes of at least 30 dams
are required to accurately estimate significant P2 effects (i.e.,
different from 0.50) using priors from our Anolis data. At
smaller values, the credible interval was too wide to accurately
estimate departures from random (Fig. 2). Simulations also
indicated that our model could accurately estimate very fine
deviations in P2 values from random, if very large samples
sizes are available (e.g., n >200, Fig. 2). However, application
of the model to other datasets shows that our model is perhaps

more sensitive to the mean number of offspring per dam than
to the total number of dams, with the model being more
accurate for species in which individual females produced
greater numbers of offspring (see “Applying the model”
below).

Comparison to classical statistics

Our resampling simulations showed that much larger sample
sizes are needed to detect significant differences in P2 values
using either the Binomial or Wilcoxon test, compared to our
ABC method. At sample sizes of 50 dams, only 26 % of the
Binomial simulations and 14 % of the Wilcoxon simulations
returned a significant result based on 1,000 iterations using the
Anolis dataset (Table 1). Sample sizes of at least 300 dams
were needed to return a majority of significant results for both
tests (Table 1).

Applying the model

For the Anolis data, paternity was reliably assigned (i.e., 95 %
confidence) to 211 offspring from 67 dams (Fig. S1). Only
dams that produced offspring were included in the study. Of
these offspring, 122 were assigned to the first male and 89 to
the second male (Fig. S1). Mean proportional second-male
paternity (P2) was 0.42, while the median P2 was 0.20
(Fig. S2). We report these values for comparative purposes
although the disparity between these two measures of central
tendency indicates the non-normality of the data and thus its
inappropriateness for analysis through parametric statistical
methods. Examining the distribution of per male difference
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Fig. 1 Accuracy of approximate Bayesian model in predicting P2 for set
P2 values from 0.1 to 0.9. Boxplots show the estimated P2 for 1,000
iterations of the model. The model returned set values with narrow
credible intervals for all values of P2. Dashed lines indicate the 1:1 line
for estimated and true values of P2

Fig. 2 Sensitivity of approximate Bayesian model to sample size for set
P2 values of 0.1–0.9. Credible interval refers to the 95 % credible interval
from the posterior distributions generated by the model. Smaller credible
intervals indicate greater confidence in an estimate

Table 1 Results from 1,000 iterations of resampling from a laboratory
paternity dataset of Anolis sagrei

Test Sample size Proportion significant

Binomial 50 0.26

100 0.36

200 0.50

300 0.57

400 0.68

500 0.76

Wilcoxon 50 0.14

100 0.21

200 0.37

300 0.55

400 0.68

500 0.80

The table shows the proportion of iterations that resulted in a significant
difference in paternity by mating order based on the Binomial and
Wilcoxon tests
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between the numbers of offspring sired when sires were first
versus the number they sired when second demonstrates that
males tended to sire more offspring when they were the first to
mate (Fig. S3). The second male sired an average of 1.32
offspring, and this value was used as a prior in the approxi-
mate Bayesian model.

Goodness-of-fit tests indicated that the Anolis offspring
count data best fit a gamma distribution. Initial simulations
showed that the model performed best at shape priors greater
than 10 and scale priors greater than 0.5. This was judged
based on the width of the credible interval. Thus, prior ranges
for shape and scale parameters were set at 10–15 and 0.5–1,
respectively. We selected a delta value of 0.1 because a value
of 0.01 did not greatly improve the precision of the model in
estimating P2, judged by width of credible interval. The ap-
proximate Bayesian model estimated a mean P2 value of 0.16
after 10,000 iterations (Fig. 3). These results indicate that the
second male sires significantly less than 50 % of the offspring
(95 % credible interval, 0.09–0.25; Fig. 3), and thus, there
appears to be a first-male advantage in Anolis sagrei .

Distribution of total offspring per dam for the rough-
skinned newt, Taricha granulosa (Jones et al. 2002) best fit
a Poisson distribution with lambda values of 167–177. The
prior value of mean number of offspring sired by the second
male was calculated from the data as 43.2. Our model esti-
mated a P2 value of 0.25 with 95 % confidence intervals of
0.23–0.28 (Fig. 4). This agrees with the estimate of P2 report-
ed by Jones et al. (2002) of 0.25 (±0.03) based on the mean
and standard deviation.

Distributions of total offspring per dam for the fungus
beetle, Bolitotherus cornutus (Conner 1995); rove beetle,
Aleochara curtula (Benken et al. 1999); and soapberry bug,
Jadera haematoloma (Carroll 1991) best fit a special case of
the normal distribution in which zero and negative values
were excluded. Prior ranges for the average of the distribu-
tions were 12–18, 34–44, and 105–119 for the fungus beetle,
rove beetle, and soapberry bug, respectively. Similarly, prior
ranges for the standard deviations were 8–12, 16–22, and 26–
36, respectively. P2 for the fungus beetle was estimated at 0.52
(CI, 0.46–59; Fig. 4), confirming the findings of Conner
(1995). Conner (1995) reported an average P2 value of 0.67,
but a one-sample t test showed no significant difference
between this value and an average value of 0.5. For the rove
beetle, we estimated P2 to be 0.54 (CI, 0.51–0.58; Fig. 4). This
suggests that the median value of 0.87 reported by Benken
et al. (1999) may be an overestimate. For the soapberry bug,
we estimated P2 to be 0.62 (CI, 0.60–0.64; Fig. 4), which
suggests that there is a second-male advantage that was
undetected by the analysis conducted in the original study
(Carroll 1991).

Additionally, application of our model to previously pub-
lished data shows that our model is most accurate when dams
tended to produce large numbers of offspring. This is
evidenced by the rough-skinned newt data and soapberry
bug data in which dams' average total number of offspring
was high (172±40 and 111±32, mean ± SD, respectively),
and our model returned a very precise estimate of P2 (mean,
0.25; CI, 0.23–0.28 and mean, 0.62; CI, 0.60–0.64; Fig. 4).
This is in contrast to the fungus beetle data in which a dam's
average total offspring was 14 (±11; SD), and our estimates of
P2 were decidedly less precise (mean, 0.52; CI, 0.46–59;
Fig. 4). Data from the rove beetle had an intermediate value
for average offspring by dam (39±19), and P2 was estimated
with an intermediate level of accuracy (mean, 0.54; CI, 0.51–
0.58; Fig. 4).

Discussion

Bayesian analysis has proven useful for addressing a wide
range of biological questions. Although it is perhaps best
known for its applications to population genetics (Pritchard
et al. 1999; Beaumont et al. 2002), it has been applied to
a diversity of topics, such as gene expression analysis
(Friedman et al. 2000) and conservation biology (Wade
2000). Similar to Bayesian applications in conservation biol-
ogy, our approximate Bayesian model uses known ecological
data to analyze a pattern in a way that is intuitive and easily
interpreted. Specifically, by including parameters that were
calculated from ecological data (such as the mean and disper-
sion of the distribution of offspring), we developed a robust
analysis for an ecological question.

Fig. 3 Posterior distribution of P2 from approximate Bayesian analysis
of Anolis sagrei paternity data. Bold line indicates the mean estimate and
dashed lines indicate 95 % credible intervals for 10,000 iterations with a
sample size (N) of 67 dams and a delta value of 0.1 between simulated
and observed means
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Through simulation and application of our model to pub-
lished data, we have shown that our model requires much
smaller sample sizes to detect significant differences than
classical statistical methods, such as the Binomial and
Wilcoxon test, and will be useful for investigating biological
processes for organisms in which large sample sizes are not
readily available. This is perhaps best demonstrated through
our re-analysis of data from the rough-skinned newt, where
our model was able to estimate a very precise value of P2
when data were only available for ten dams. Additionally, we
have shown that traditional methods of analysis often miss
relevant patterns related to mating order. For example, Carroll
(1991) reported no effect of mating order in a study of the
soapberry bug; however, we find that there may actually be a
second-male advantage, with second males siring 62 % of
offspring on average. In the original study, Carroll (1991) did
not conduct a statistical test on the soapberry bug P2 data; he
simply reported the twomodes of the distribution of P2 values,
0.30 and 0.80. Perhaps this was because the bimodal nature of
the data made it difficult to analyze under the available statis-
tical means. Alternatively, the use of summary statistics may
overestimate an effect of mating order when the data are not
normally distributed. For example, in a study of the rove
beetle, Benken et al. (1999) reported a median value of P2 of
0.87, which would indicate a strong second-male advantage.
However, when we fit the data to the appropriate distribution
(a special case of the normal), our model estimated P2 to be
0.54, which would indicate only a slight second-male advan-
tage. Because Benken et al. (1999) did not report confidence
values for their estimate and found high variance for P2, we
believe our estimate to be a more accurate representation of
the biological pattern. Thus, the use of appropriate analysis is
essential to accurate interpretation of the data. This is a per-
vasive problem in behavioral ecology, a field in which sample
sizes are often small and not normally distributed. Our model

represents a simple solution to this problem and will be useful
to a number of studies of reproductive behavior.

Although P2 has been widely applied to investigate sperm
competition and cryptic female choice, it has often been
criticized because, by focusing on an average value of P2,
one is often ignoring the variance around the value, which
may actually provide more information on the biology of a
mating system (Cook et al. 1997; Corley et al. 2006). How-
ever, we propose that estimation of P2 through our model will
be useful for two reasons: (1) estimating P2 can give prelim-
inary insight into postcopulatory patterns that can lead to
further investigation of the biology and behaviors that result
in these patterns and (2) our model provides a credible interval
on the estimate of P2, which allows for an estimation of the
variance. Additionally, future versions of our model could
analyze data from more than two sires by incorporating mul-
tiple priors for average offspring per male and estimating the
proportional paternity of each. Thus, through the power, sim-
plicity, and robustness of our model, we hope to open the
doors for investigation of postcopulatory sexual selection in a
wide range of mating systems.

Although our primary goal in this paper is to develop a new
analytical tool for broad application, our initial motivation was
to gain greater insight into the effect of mating order on
fertilization success in the brown anole. Implementing our
approximate Bayesianmodel, we have shown that male brown
anoles gain a strong paternity advantage when they are the first
to copulate with a female (P2=0.16). Given the nature of our
mating design, females were allowed to initially interact with
both males together, and thus, there may have been matings
during that initial 3-day period of assessment. This caveat
would be of primary concern in our study if a second-male
advantage had been detected. The first male advantage report-
ed here suggests that any unintended matings during the initial
assessment period only make our findings conservative.

Newt

P2

F
re

qu
en

cy

0.20 0.22 0.24 0.26 0.28 0.30

0
50

10
0

15
0

20
0

25
0

30
0

Fungus Beetle

P2

F
re

qu
en

cy

0.40 0.45 0.50 0.55 0.60 0.65
0

50
10

0
15

0
20

0
25

0

Rove Beetle

P2

F
re

qu
en

cy

0.45 0.50 0.55 0.60 0.65

0
50

10
0

15
0

20
0

Soapberry Bug

P2

F
re

qu
en

cy

0.58 0.60 0.62 0.64 0.66

0
50

10
0

15
0

20
0

Fig. 4 Posterior distributions of P2 resulting from application of the
approximate Bayesian model to previously published data for the
rough-skinned newt (Taricha granulosa ), the fungus beetle
(Bolitotherus cornutus ), the rove beetle (Aleochara curtula ), and

the soapberry bug (Jadera haematoloma ). Bold lines indicate the
mean estimate and dashed lines indicate 95 % credible intervals for
1,000 iterations with a delta value of 0.1 between simulated and
observed mean
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A first-male advantage in the brown anole could result
either from male–male competition or through a female's
preference for the first male. Copulatory plugs and mate
guarding have both been reported in other lizard species
(Olsson and Madsen 1998; Moreira and Birkhead 2003).
Although either of these could result in a first-male advantage,
we observed no obvious copulatory plugs and mate guarding
was prevented by the design of the experiment. However, one
male's ejaculate could serve as a physical impediment and
limit sperm transfer by subsequent males. A first-male advan-
tage could also arise if females get a majority of their sperm
stores from the first male with which they mate. For example,
the second male to mate may choose to deliver less sperm to a
non-virgin female (Birkhead and Møller 1998; Parker and
Pizzari 2010) or a female may accept less sperm from the
second male. Female rough-skinned newts primarily receive
sperm from their first mate and then “top off” their sperm
stores with sperm from additional males only if space remains
in their spermathecae (Jones et al. 2002). Alternatively, fe-
males could be choosing whether or not to use the majority of
sperm from the first male depending on their assessments of
male quality. In this case, P2 is expected to have a bimodal
distribution with peaks at zero and one (i.e., relatively few
females produce offspring with both the first and second
male). This bimodal pattern has been suggested to occur
when females “trade up” or remate to gain higher quality
sperm (Evans and Magurran 2001; Pitcher et al. 2003).
Recent work has shown that larger males tend to have
more fit sons, as measured by survival (Cox and Calsbeek
2010). This suggests that body size may indicate some-
thing about a male's genetic quality. Thus, female brown
anoles may be deciding to trade up when the second male
is larger or of better quality and the first-male advantage
may be, at least in part, related to female choice.

Although the mechanisms that account for the mating-
order bias observed in this study require further investigation,
our model is applicable to a wide range of taxa (especially
nonmodel organisms) and could provide valuable insight into
pre- and postcopulatory mating processes that are related to
mating order. Simulations show that our model is able to
detect departures from random paternity based on mating
order, even at relatively small sample sizes, and can easily
be adapted to fit other distributions of offspring counts and
service other systems in which offspring are distributed non-
normally. In two cases, our model confirmed patterns detected
through other statistical analysis (Conner 1995; Jones et al.
2002); for rough-skinned newts, our model showed a clear
first-male advantage, and in the fungus beetle, there are no
detectable differences between the two males. In the other two
cases, we have shown that traditional analysis can fail to detect
a mating-order advantage (e.g., soapberry bugs; Carroll 1991)
or can overestimate an advantage (e.g., rove beetle; Benken
et al. 1999). Additionally, components could be added to our

model to address differences in paternity related to male char-
acters other than mating order and thus could be useful for
determining biases related to a wide variety of postcopulatory
processes.

Acknowledgments Research was conducted under permits from the
Bahamas Ministry of Agriculture and approval from the Dartmouth
College Institutional Animal Care and Use Committee (protocol 07-02-
03). An award from the National Science Foundation (DEB 0816862 to
R. Calsbeek) and funding from Dartmouth College provided financial
support.We thankM. Najarro for the help with laboratory data collection.
Genotypes were collected in the Molecular Biology and Proteomics Core
Facility at Dartmouth College; we thank C. H. Lytle and S. A. Tyndall for
their help with microsatellite fragment analysis. We thank M. A. McPeek
and his graduate writing class for feedback on early versions of this
manuscript.

Ethical standards The experiments described in this manuscript com-
ply with the current laws of the countries in which they were conducted.

Conflict of interest The authors declare no conflict of interest.

References

Andersson M (1994) Sexual selection. Princeton University Press,
Princeton, NJ

Bardeleben C, Palchevskiy V, Calsbeek R,Wayne RK (2004) Isolation of
polymorphic tetranucleotide microsatellite markers for the brown
anole (Anolis sagrei). Mol Ecol Notes 4:176–178

Bateman AJ (1948) Intra-sexual selection in Drosophila . Heredity
2:349–368

Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian
computation in population genetics. Genetics 162:2025–2035

Benken T, Knaak A, Gack C, Eberle M, Peschke K (1999) Variation of
sperm precedence in the rove beetle Aleochara curtula (Coleoptera:
Staphylinidae). Behaviour 136:1065–1077

Birkhead TR, Hunter FM (1990) Mechanisms of sperm competition.
Trends Ecol Evol 5:48–52

Birkhead TR, Møller AP (1998) Sperm competition and sexual selection.
Academic, London

Birkhead TR, Wishart GJ, Biggins JD (1995) Sperm precedence in the
domestic fowl. P Roy Soc Lond B Bio 261:285–292

Calsbeek R, Bonneaud C (2008) Postcopulatory fertilization bias as a
form of cryptic sexual selection. Evolution 62:1137–1148

Calsbeek R, Bonneaud C, Prabhu S, Manoukis N, Smith TB (2007)
Multiple paternity and sperm storage lead to increased genetic
diversity Anolis lizards. Evol Ecol Res 9:495–503

Carroll SP (1991) The adaptive significance of mate guarding in the
soapberry bug, Jadera haematoloma (Hemiptera:Rhopalidae). J
Insect Behav 4:509–530

Conner JK (1995) Extreme variability in sperm precedence in the fungus
beetle, Bolitotherus cornutus (Coleoptera Tenebrionidae). Ethol
Ecol Evol 7:277–280

Cook PA, Harvey IF, Parker GA (1997) Predicting variation in sperm
precedence. Philos T Roy Soc B 352:771–780

Corley LS, Cotton S, McConnell E, Chapman T, Fowler K,
Pomiankowski A (2006) Highly variable sperm precedence in the
stalk-eyed fly, Teleopsis dalmanni. BMC Evol Biol 6:53

Cox RM, Calsbeek R (2010) Cryptic sex-ratio bias provides indirect
genetic benefits despite sexual conflict. Science 328:92–94

1874 Behav Ecol Sociobiol (2013) 67:1867–1875



Cox RM, Duryea MC, Najarro M, Calsbeek R (2011) Paternal condition
drives progeny sex-ratio bias in a lizard that lacks parental care.
Evolution 65:220–230

Darwin C (1871) The descent of man, and selection in relation to sex.
Murray, London

Eberhard WG (1996) Female control: sexual selection by cryptic female
choice. Princeton University Press, Princeton, NJ

Eggert A-K, Reinhardt K, Sakaluk S (2003) Linear models for assessing
mechanisms of sperm competition: the trouble with transformations.
Evolution 57:173–176

Evanno G, Madec L, Arnaud J-F (2005) Multiple paternity and
postcopulatory sexual selection in a hermaphrodite: what influences
sperm precedence in the garden snail Helix aspersa? Mol Ecol
14:805–812

Evans JP, Magurran AE (2001) Patterns of sperm precedence and predic-
tors of paternity in the Trinidadian guppy. P Roy Soc Lond B Bio
268:719–724

Friedman N, Linial M, Nachman I, Pe'er D (2000) Using Bayesian
networks to analyze expression data. J Comput Biol 7:601–620

Harano T, Nakamoto Y, Miyatake T (2008) Sperm precedence in
Callosobruchus chinensis estimated using the sterile male tech-
nique. J Ethol 26:201–206

House C, Hunt J, Moore A (2007) Sperm competition, alternative mating
tactics and context-dependent fertilization success in the burying
beetle,Nicrophorus vespilloides . P Roy Soc Lond B Bio 274:1309–
1315

Jones AG, Adams EM, Arnold SJ (2002) Topping off: a mechanism of
first-male sperm precedence in a vertebrate. Proc Natl Acad Sci
USA 99:2078–2081

Kraaijeveld-Smit FJL, Ward SJ, Temple-Smith PD, Paetkau D (2002)
Factors influencing paternity success in Antechinus agilis : last-male
sperm precedence, timing of mating and genetic compatibility. J
Evolution Biol 15:100–107

Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical
confidence for likelihood-based paternity inference in natural popu-
lations. Mol Ecol 7:639–655

Moreira PL, Birkhead TR (2003) Copulatory plugs in the Iberian Rock
Lizard do not prevent insemination by rival males. Funct Ecol
17:796–802

Olsson M, Madsen T (1998) Sexual selection and sperm competition in
reptiles. In: Birkhead TR, Möller AP (eds) Sperm Competition and
Sexual Selection. Academic, London, p 504

Parker GA, Pizzari T (2010) Sperm competition and ejaculate economics.
Biol Rev 85:897–934

Pitcher TE, Neff BD, Rodd FH, Rowe L (2003) Multiple mating and
sequential mate choice in guppies: females trade up. P Roy Soc
Lond B Bio 270:1623–1629

Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999)
Population growth of human Y chromosomes: a study of Y chro-
mosome microsatellites. Mol Biol Evol 16:1791–1798

Radder RS, Elphick MJ, Warner DA, Pike DA, Shine R (2008)
Reproductive modes in lizards: measuring fitness consequences
of the duration of uterine retention of eggs. Funct Ecol 22:332–
339

Simmons LW (2001) Sperm competition and its evolutionary conse-
quences in the insects. Princeton University Press, Princeton, NJ

Thornhill R (1983) Cryptic female choice and its implications in
the scorpionfly, Harpobittacus nigriceps . Am Nat 122:765–
788

Venables W, Ripley B (2002) Modern applied statistics with S, 4th edn.
Springer, New York

Wade PR (2000) Bayesian methods in conservation biology. Conserv
Biol 14:1308–1316

Zamudio K, Sinervo E (2000) Polygyny, mate-guarding, and posthumous
fertilization as alternativemale mating strategies. Proc Natl Acad Sci
USA 97:14427–14432

Behav Ecol Sociobiol (2013) 67:1867–1875 1875


	A novel application of Approximate Bayesian Computation for detecting male reproductive advantages due to mating order
	Abstract
	Introduction
	Methods
	Approximate Bayesian Computation
	Verification and sensitivity of model
	Comparison to classical statistics
	Applying the model

	Results
	Verification and sensitivity of model
	Comparison to classical statistics
	Applying the model

	Discussion
	References


